Vesicular stomatitis virus oncolysis is potentiated by impairing mTORC1-dependent type I IFN production.

نویسندگان

  • Tommy Alain
  • XueQing Lun
  • Yvan Martineau
  • Polen Sean
  • Bali Pulendran
  • Emmanuel Petroulakis
  • Franz J Zemp
  • Chantal G Lemay
  • Dominic Roy
  • John C Bell
  • George Thomas
  • Sara C Kozma
  • Peter A Forsyth
  • Mauro Costa-Mattioli
  • Nahum Sonenberg
چکیده

Oncolytic viruses constitute a promising therapy against malignant gliomas (MGs). However, virus-induced type I IFN greatly limits its clinical application. The kinase mammalian target of rapamycin (mTOR) stimulates type I IFN production via phosphorylation of its effector proteins, 4E-BPs and S6Ks. Here we show that mouse embryonic fibroblasts and mice lacking S6K1 and S6K2 are more susceptible to vesicular stomatitis virus (VSV) infection than their WT counterparts as a result of an impaired type I IFN response. We used this knowledge to employ a pharmacoviral approach to treat MGs. The highly specific inhibitor of mTOR rapamycin, in combination with an IFN-sensitive VSV-mutant strain (VSV(DeltaM51)), dramatically increased the survival of immunocompetent rats bearing MGs. More importantly, VSV(DeltaM51) selectively killed tumor, but not normal cells, in MG-bearing rats treated with rapamycin. These results demonstrate that reducing type I IFNs through inhibition of mTORC1 is an effective strategy to augment the therapeutic activity of VSV(DeltaM51).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Negative regulation of Nmi on virus-triggered type I IFN production by targeting IRF7.

Viral infection causes host cells to produce type I IFNs, which play a critical role in viral clearance. IFN regulatory factor (IRF) 7 is the master regulator of type I IFN-dependent immune responses. In this article, we report that N-Myc and STATs interactor (Nmi), a Sendai virus-inducible protein, interacted with IRF7 and inhibited virus-triggered type I IFN production. The overexpression of ...

متن کامل

The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection.

RNA virus infection is recognized by the RIG-I-like receptors RIG-I and MDA5, which induce antiviral responses including the production of type I interferons (IFNs) and proinflammatory cytokines. RIG-I is regulated by Lys63-linked polyubiquitination, and three E3 ubiquitin ligases, RNF125, TRIM25, and Riplet, are reported to target RIG-I for ubiquitination. To examine the importance of Riplet i...

متن کامل

Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses.

The DExD/H box RNA helicase retinoic acid-inducible gene I (RIG-I) and the melanoma differentiation-associated gene 5 (MDA5) are key intracellular receptors that recognize virus infection to produce type I IFN. A third helicase gene, Lgp2, is homologous to Rig-I and Mda5 but lacks a caspase activation and recruitment domain. We generated Lgp2-deficient mice and report that the loss of this gene...

متن کامل

Cell Cycle Progression or Translation Control Is Not Essential for Vesicular Stomatitis Virus Oncolysis of Hepatocellular Carcinoma

The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combin...

متن کامل

Guanylate binding protein 4 negatively regulates virus-induced type I IFN and antiviral response by targeting IFN regulatory factor 7.

IRF7 is known as the master regulator in virus-triggered induction of type I IFNs (IFN-I). In this study, we identify GBP4 virus-induced protein interacting with IRF7 as a negative regulator for IFN-I response. Overexpression of GBP4 inhibits virus-triggered activation of IRF7-dependent signaling, but has no effect on NF-κB signaling, whereas the knockdown of GBP4 has opposite effects. Furtherm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 4  شماره 

صفحات  -

تاریخ انتشار 2010